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A CONTRACTING-INTERVAL PROGRAM FOR THE 

DANILEWSKI METHOD* 

By J a m e s  D. Har r i s  
Langley Research Center 

SUMMARY 

The concept of contracting-interval programs is applied to the Danilewski method 
fo r  finding the eigenvalues of a matrix. 
which (1) a contracting-interval program is developed for  the reduction of a matrix to 
Hessenberg form, (2) a contracting-interval program is developed for  the reduction of a 
Hessenberg matrix to colleague form, and (3) the characterist ic polynomial with interval 
coefficients is readily obtained from the interval of colleague matrices,  and this interval 
polynomial is then factored into quadratic factors so  that the eigenvalues may be 
obtained. 

The development is a three-step process  in 

To develop a contracting-interval program for  factoring this polynomial with inter- 
val coefficients it is necessary to have an iteration method which converges even in the 
presence of controlled rounding e r r o r s .  

A theorem is stated giving sufficient conditions for  the convergence of Newton's 
method when both the function and its Jacobian cannot be evaluated exactly but when the 
e r r o r s  can be made proportional to the square of the norm of the difference between the 
previous two iterates.  This theorem is applied to prove the convergence of the gener- 
alization of the Newton-Bairstow method that is used to obtain quadratic factors of the 
characterist ic polynomial. 

* This research was originally presented to  the Faculty of the School of Engi- 
neering and Applied Science, University of Virginia, in partial  fulfillment of the 
requirements for  the degree of Doctor of Philosophy (Applied Mathematics). 
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SYMBOLS 

Standard matrix notation is used throughout; that is, elements a r e  designated by 
lower case le t ters  corresponding to the matrix symbol and with appropriate subscripts. 

A rea l  n by n matrix 

- 
A A after row and column interchanges 

B matrix containing rounding e r r o r s  made in reduction of H to F 

E matrix containing rounding e r r o r s  made in converting to H 

F 

F defined as NM* - I in chapter 11 

colleague matrix in chapter III 

f(x) vector whose components a r e  functions of x 

fp) approximation to f 

H upper Hessenberg matrix 

I identity matrix 

Ijj, identity matrix with columns j and j '  interchanged 

J Jacobian of f 

J approximation to J 

M inverse of N 

ti 

N lower triangular matrix 

n order  of matrix A 

P(X> polynomial of degree n 

Pi (x> polynomials satisfying recurrence relation 
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Pi real numbers satisfying recurrence relation 

R large positive number 

Rn n-dimensional real- coordinate space 

u(s,t),v(s,t) functions defined following algorithm H of chapter IV 

V upper triangular matrix 

W inverse of V 

superdiagonal element of colleague matrix @i 

diagonal element in colleague matrix Pi  

bf(x) positive continuous function of x 

6 J (XI positive continuous function of x 

6 H X )  polynomial of degree n - 1 with positive coefficients 

x constant with same dimensions as l / x  

Notation used is as follows: 

of order  n, IlAll = max { 2" laij$ 
E i 9 n  j = l  

where A is a matrix I1 A I1 

A S B  if A and B are vectors or  matrices,  this means that each component 
of A is l e s s  than or  equal to corresponding component of B 

1 [A f 6A] {A'lA - 6A 9 A S A + 6A) o r  interval with midpoint A and half- 
width 6A 

* asterisk following a symbol denotes approximation; for  instance, u*(s,t) 
is an approximation to u(s,t) 

f(S) (f(X)lX E S} where f is a function and S c Rn 

vii  



n greatest  integer less than - 
2 

[P f 6P] where P(x) = an + anqlP1 + . . . + aOPn and 

6P = 6an + 6an-lP1 + . . . + 6alPn-1 (6ai 2 0 for each i), 

denotes set of all polynomials P'(x) = ah i . . . + a;Pn-l + aopn such 

that ai E bi * 6ai] (i = 1,2, ..., n) 

[P * 6P] 

product symbol Tr 
SUP supremum (least upper bound) 

ll x II 

(.Is! se t  of all x such that statement s is t rue  

min{xls} least  element of indicated se t  

viii 



CHAPTER I 

INTRODUCTION 

This paper presents  the resul ts  of an investigation of techniques for  applying the 
concept of contracting-interval programs (ref. 1) to the Danilewski method for  finding the 
eigenvalues of a matrix. 

Jus t  if i cation 

Most data used for  input to a computer program are measured data o r  are the 
result  of truncating exact data. 
program which makes rounding e r r o r s .  Thus, much analysis may be required to deter-  
mine how closely the computer solution approximates the exact solution of the problem. 

These inexact data a r e  then processed by a computer 

Contracting-interval programs present an alternative to this procedure. The user  
of a contracting-interval program can supply an interval which is known to contain the 
exact data. The contracting-interval program then gives him an interval, each element 
of which is the exact answer corresponding to some element in the input interval. This 
is as good a result  as he could hope to obtain. 

Notice that contracting-interval programs are not the same as expanding-interval 
programs. An expanding-interval program computes an output interval which contains 
all  of the answers corresponding to elements of the input interval. However, there may 
be elements in the output interval of an expanding-interval program which do not corre-  
spond to any element in the input interval. 
between contracting- and expanding-interval programs, s ee  reference 1.  

For a further discussion of the differences 

The Danilewski method is particularly appropriate for  testing the concept of 
contracting-interval programs, since it is a method which is very sensitive to rounding 
e r ro r s .  When executed by using a fixed-precision arithmetic, it  frequently gives unreli- 
able resul ts  because of the rounding e r ro r s ,  but a contracting-interval program based on 
the Danilewski method yields exact results.  Also, the Danilewski method is a fast 
method f o r  obtaining eigenvalues and, even with the increased precision that a 
contracting-interval program requires,  it may prove to be competitive in speed with 
other more inherently stable methods (ref. 2). 

The Danilewski method used in the present paper is not the classical Danilewski 
method but is a three-step process  whereby (1) a matrix is reduced to  Hessenberg form 
by a similari ty transformation, (2) the resulting Hessenberg matrix is reduced to col- 
league form (ref. 3) by a similari ty transformation, and (3) the characterist ic polynomial 
is obtained from the colleague matrix and the roots of this polynomial are calculated. 



I I 1 1 1  I I . . ..., . , . .. . _. ___ 

As Wilkinson (ref. 4) has shown, it is in this second step that problems develop. The 
resulting colleague matrix may be significantly more ill-conditioned than was the corre-  
sponding He s senbe rg matrix. 

Previously, contracting-interval programs have been developed for  solving l inear 
equations (ref. 1) and fo r  finding real roots of a polynomial (ref. 5), but a contracting- 
interval program has not been attempted for  a problem so complex as the matrix- 
eigenvalue problem. 

Preview of Remaining Chapters 

Any exact computation defines a mapping f from one vector space Rn to 
another vector space Rm. If S c Rn, then f(S) {f(X)(X E S} . If [A f 6A] C Rn, 
then f [A f BA] is not necessarily an interval. However, a contracting-interval pro- 
gram computes an interval [ B f 6B] such that [ B f 6B] C f [A f 6A]. 

A two-step process  is used here to develop contracting-interval programs. The 
6A 
R 

first step obtains B such that B = f(A') where [ A  - A'/ 5 -, and R is a large 
positive number. During this step the program must have the ability to control the 
rounding e r r o r s  made in each arithmetic operation. The second step finds 6B such 

- ' 6A ; that is, if B' E [B f 6B], then B' = f(A") where 1 that [ B  f 6B] C f 

[A7 - AT'l 5 - - ' 6A. R 
Contracting-interval programs have the property (ref. 1) that, given contracting- 

interval programs for  f and g, there is automatically obtained a contracting-interval 
program for the composition of f and g. 

In chapter I1 a contracting-interval program is developed for  reducing an 
interval [A + 6A] of real  matrices to an interval [H f 6Hj of upper Hessenberg 
matrices by a similarity transformation. 
although the algorithm for obtaining it is based on the one given in reference 4 on 
page 357. 

Most of the material  in chapter I1 is new, 

In chapter 111 a contracting-interval program for  reducing an interval [H f 6H] 
of upper Hessenberg matrices to an interval 
larity transformation is developed. 
is a generalization of the one given in reference 3. 
shown in chapter I11 w a s  suggested by B. A. Chartres.  Much of the work in chapter 111 
is based on work done in reference 6 although, in reference 6, Chartres w a s  concerned 
with obtaining a companion matrix F which was s imilar  to some H' E [H f 6H]. I 

F rom [F f 6F] a se t  of polynomials [P f 6P] is obtained, such that each element is 
the characterist ic polynomial of some A' E [A f 6A]. 

[F f 6F] of colleague matrices by a simi- 
The concept of a colleague matrix that is used here 

The form of the colleague matrix as 

I 

I 
, 
It 
'I 
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In chapter IV an algorithm is developed for  obtaining an  interval [bl f 6bl] and 

the intervals pi f 6sd and [ti f 691 (i = 172 ?...,[:I), where [t] is the greatest  

integer in 

and b' E [bl f 6bd,  then 

and n is the degree of P such that, if  s' E si f 6s$ t' E [ti f 6td,  
2 r 

If n is even, then bl = 6bl = 0. The method used is a generalization of the Newton- 
Bairstow method. 
chapter IV leads to convergence. 

In appendix A, a proof is given that the algorithm developed in 

F rom chapter IV it may be seen that P2 - sip1 - ti is a factor of the character-  

istic polynomial of some matrix A' E [A f 6A] for s; E pi f 6sd and t; E [ti f 6tJ 

i = 1.2, ...,[:I). Thus, the roots of this quadratic polynomial a r e  eigenvalues of the ( 
matrix A'. Intervals about the eigenvalues a r e  not determined in this study. 

3 



CHAPTER 11 

REDUCTION O F  AN INTERVAL OF REAL MATRICES TO AN INTERVAL 

OF UPPER HESSENBERG MATRICES 

In chapter I1 an  algorithm for  converting an interval of real matrices into a n  
interval of upper Hessenberg matrices by a similari ty transformation is described. 

Let A be a real matrix of interval midpoints, and let 6A be a matrix whose 
elements are the interval half-widths. 
that is, H has the form 

Let 

H =  

- 
hl 1 h12 

h2 1 h22 

h3 2 

hI3 . . . 
h23 . 

h33 . . . 
h43 . . . 

Let N denote a matrix of the form 

N =  

hn, n- 1 

H denote an  upper Hessenberg matrix; 

0 1 

1 n32 

"42 n43 1 

. .  

Let 6H be an upper Hessenberg matrix of all positive elements. The matr ices  H 
and 6H are determined such that if H'  E [H f 6H], then H'  is s imilar  to some 
A' E [A f 6A]. To do this, an N of the form given above is found such that if 
H' E [H f 6H], then H' = N-lA'N f o r  some A' E [A f 6A]; that is, 

[H f 6H] C N-'[A f 6A]N. 

4 
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cF 
Since A is the midpoint of the original interval, it is desirable that the midpoint 

of the interval of Hessenberg matr ices  satisfy H = N-lAN for  some N; that is, 

N H = A N  (1) 

Such an  H 
long as no ze ro  elements are generated along the subdiagonal of H 

Algorithm A 

can be calculated by using exact ari thmetic in the following algorithm as 
(ref. 4, p. 358): 

- r = 1,2, ..., n 

For  i = 1,2 ,..., min{r+l,n} 

I n i- 1 

F o r  i = r+2, ..., n 

air + f "iknkr - 2 "ikhkr 

hr+l , r  

- k=r+l  k=2 
ni, r + l  - 

Now some provision must be made so  that the algorithm applies in the case when 
= 0 is calculated. This is done in the following manner: an hr+l,r 

Algorithm B 

For  r = ~ -. 1,2,.,.,r 

F o r  i = 1,2, ..., r 
i- 1 

hir = air + 2 aiknkr - 2 nikhkr 
k=r+l k=2 

5 
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If r < n. then 

For  i = r+l,r+2, ..., n 

r 
w. 1 = a- ir + f aiknkr - 1 nikhkr 

k=r+l k=2 

Find j such that 

Interchange ( uj) 

If Or+l f 0, then 

F o r  i = r+l,r+2, ..., . n 

For  i = 1,2, ... n 
I - - ? -  

Interchange ai j,ai, r+l) 

For  i = 1,2, ..., r 
( 

hr+l , r  = 'r+l 

For i = r+2,r+3, ..., n 
I--- ~ 

If or+l = 0, then 
7- - .  - -  

For i = r+2,r+3, ..., n r- "i,r+l - -  = 0 

With algorithm B, an N and an H are obtained, but equation (1) is no longer 
satisfied. 

6 



Effect of Inter changes 

The effect of interchanges is shown in theorem 1 in which I.. denotes the iden- 
multiplies a matrix on 

3 3 '  
tity matrix with columns j and j '  interchanged. When Ijjl 
the left, the result  is to interchange rows j and j '  in that matrix. When I.. multi- 
plies a matrix on the right, the result  is to interchange columns j and j '  in that 
matrix. 

Theorem 1 - Given an  n x n matrix A', if N and H are calculated by algo- 
rithm B, then NH = XN where 

33'  

and each i' corresponds to the j calculated by algorithm B when r = i - 1. 

Proof - See reference 7 .  

Bounds on Rounding E r r o r s  

If the interchanges which need to be made to A are known ahead of time, the 
algorithm fo r  finding N and H f rom is the same as algorithm A. 

and 

For  

Up to this point, rounding e r r o r s  have been ignored. 
N satisfy 

In reality, the computed H 

r = 1,2, ..., n 

For  i = 1,2, .  . .,min{r+l,n) 
I 

For  i = r+2,r+3, ..., n 
I 

where eir is the rounding e r r o r  made at a given step. 

Let E = p.3; then 
11 

N H - x N = E  



1 1 1  .I,,, I I I I I .I 1 1 1 .  11.1, , ..-.._ _-- 

Now bounds on E which guarantee that H is very close to a solution of NH = 
must be found. Also, 6H must be found such that 

[H f 6H] C N-l[X f 6 A N  

This can be done as follows: 
Subtracting this f rom equation (2) yields 

Let H '  E [H f 6H] and A' = NH'N-l, then NH' - A'N = 0. 

N(H - HI)  = (X - A')N + E 

Therefore 

Thus 

if 

and 

(3) 

where R is a large positive number. 

If R is chosen to be very large then 1 E 1 must be very small ,  but 6H gets 
la rger  as R gets  larger .  If I E I is very small  then a large amount of precision must 
be used in the computations. Since in the algorithms for  computing 6H, no attempt is 
made to compute the largest  possible 6H satisfying equation (3), there is very little to 
be gained by choosing an  extremely large value for  R. Usually a satisfactoky choice is 
R = 10. Then 6H is taken to be as large as possible and sti l l  satisfy equation (3 ) .  The 
algorithm used to determine 6H is described in the last section of this chapter. 

Let G = kid where y . .  > 0 for  all i and j .  If 
1 J  

then equation (4) can be satisfied by requiring that \ E )  2 G. 

8 



Let M = N-l ,  where M has the same form as N. Therefore, 

Sin 

and 

equation (5) must be satisfied, the following equations must 1: satisfi 

sai 
yil 5 - 

R 

n 

j=r+l  

Equation (6) is satisfied if 

(i = l ,2,  ..., n) 

( n z r > l ;  n z i >  1) 

( j  = r , r+ l ,  ..., n) 

Therefore, yij must satisfy 

From this analysis it is apparent that if  y..  
13 

is defined to be 

i (j 2 2) 

J 
(7) 

6A 
R 11 13 

then, equation (5) is satisfied and 1EIIMl 5 - for  all E such that e . .  5 y.. .  Thus, 

the y. .  can serve  as bounds on the rounding e r r o r s .  
1J 

9 



Effect of Interchanges on Rounding-Error Bounds 

Now, the above assumes  that the row and column interchanges that need to be made 
are known beforehand, but these interchanges must be determined by the algorithm; 
and yij must be calculated before hij , J  
is calculated if i > j + 1. 

is calculated if i 2 j + 1 and before ni .+l 

The following notation is used: b = a @ e means that b is set equal to a value 
which differs from a by no more than e, that is, Ib - a1 5 e; b = a @ e means 
that 0 < b - a < e, and b = a @ e means that 0 < a - b < e; b = a(l @ e )  is defined 
to  be equivalent to b = a @ (lale) with analogous meanings fo r  b = a(l @ e) 
and b = a(l 0 e). 

Now, suppose the rounding-error bounds b.. are determined as in algorithm C. 
13 

Note that it is important that the computed bij be no la rger  than the b.. that would be 
calculated if exact ari thmetic were used. However, i t  is not necessary that the b.. be 

11 
calculated extremely accurately since a small  change in the rounding-error bound is not 
likely to change significantly the amount of precision required in the corresponding 
computation. 

11 

Thus, for example, it is required that 

b. = -(1 6ai 1 0 0.01) 
11 R 

6ai 1 is required to be less  than the exact resul t  of the computation - 
R '  

that is, bil 

but the use of a large amount of precision is not required in the computation. 

Algorithm ~~~ C 

For  i = 1,2, ..., n 

bil - -7 6ai1(l 0 0.01) 

For  r = 1,2-,:..,n 
I 

: i = 1,2, ...,: 

hir = ( air + f - ' i khkj  @ bir 
k=r+l k=2 

10 
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r < n. then 

For  i = r+l,r+2, ..., n 

r 
I 

(7. 1 = a ir f "iknkr - 2 nikhkr 
k=r+l k=2 

Find j such that 

Or+l # 0, then 

For  i = r+l,r+2, ..., n 

Interchange ( aji,ar+l,i) 

For  i = 1,2, ..., n 

(ai j 9 ai, r+ 1) Interchange 

Interchange ('aij, 'ai,r+l) 

Interchange ('aji, 6ar+l,i) 

For  i = 1,2, ..., r 

Interchange (nji,nr+l,i) 

Fo r  i = r+2,r+3, ..., n 

"i,r+l 1 r+ l  = 0. I" 
= c J  r+ l , r  r + l  n 

.+l = 0, then 

For  i = r+2,r+3, ..., n 

ni,r+l = O 

-~ 

11 



For i = 2,3, ..., r 
I 

For i = 1,2, ..., n 
I 

Now it must be determined whether or  not the bounds on the rounding e r r o r s  as 
computed in algorithm C are larger  than those given by equation (7). Suppose that 
during execution of algorithm C all calculations for  r 5 r' have been completed. Any 
remaining interchanges affect only rows r'+2,r'+3, ..., n of N, A, and 6A, and 
columns rT+2,r '+3 ,..., n of A and 6A. 

The only elements of M required for the calculation of bir' (i = 1,2,  ..., n) a r e  
those in row r ' .  
Therefore,  row r' of M is a row of the inverse of the N obtained after the execu- 
tion of algorithm C is finished. 

These elements are not affected by the remaining interchanges. 

C For i 5 r' + 1, 6airr = 6g. Therefore, for  i 5 r' + 1, bir7 = yir7. 

Now, fo r  i > r '  + 1, the element in position ni,rT+l after all interchanges a r e  
ir" , 

when r = r '  during the "it, r '+ 1 completed may be the element which was  in position 
execution of the algorithm. Thus, biT,r7 was used as a bound for  the rounding e r r o r  
made in the computation of ni,rt+l. This implies that 6girf is equal to the element 
which was in position 6ai7,rt when r = r'. Therefore, bi7,r7 computed during the 
execution of algorithm C satisfies biT,rt 5 yir7; that is, the bound on the rounding 
e r r o r  which was made in the calculation of ni,rT+l is no larger  than the one given by 
equation (7). 

Therefore, if algorithm C is used to compute N 

I E / I N -  1 1 5 - 6A 
R 

where E is the matrix containing the actual rounding 

and H, 

e r r o r s .  

12 



An Upper Bound on IMI 

By using variable-precision ari thmetic such as SPAR (ref. 8) provides, the ele- 
ments of M can be calculated exactly. However, the bir need not be extremely 
accurate. It is required only that 

to guarantee that equation (8) is satisfied. Therefore, ra ther  than compute M exactly, 
it is more efficient to calculate an upper bound on 
arithmetic. 

1 . 1 1  by using single-precision 

One way of finding an upper bound on IMI is as follows: Let M* be that 
approximation to M which is calculated by 

where f l  denotes that the operations a r e  done in single-precision floating-point ari th- 
metic. Let s1 = nip and sk+ l  = [sk + ni,k+p(l + Pk)m:+p,p(l + q k j j ( l +  e,). Then, 

mip = -Simp for  some pk, qk, and ek (k = 1,2, ..., i-p) satisfying J p  kl' Iqk), 
* 

< fsp, and p is a bound on the rounding e r r o r s  made in single-precision calcu- SP 
lations (ref. 9, p. 7). Therefore, 

i-p- 1 i-p- 1 

i=l j=p+l r=j-p 
'i-p = s1 (1 + e,) + if nijmjfp(l + pj_P>(l + qj-p) ( 1  + e,) 

and 

'i-p m* = -  
iP 

The refore 

i-p- 1 i- 1 i-p- 1 

i= 1 j =p+ 1 r=j-p 
' 1  fl (1 + or> (11) 

* * 
1P 1P o = m. + n. J- (1 + si> + 1 nij(l + pjmp)mjp(l + qj-p 

13 



cfij]. ~f i < j ,  f . . = ~ .  ~f i = j ,  f . . = 1 - 1 = 0 .  1 J  Let F = N M *  - I where F = 
If i = j + 1, f . .  = n. = 0, since the operation m 

formed exactly. If i > p + 1 

11 
can be per-  j + l ,  j = -nj+l, j 1j j+l,j + mj+l , j  

i- 1 * - fip - nip + 1 nijmjp + mrp 
j =p+ 1 

Subtracting equation (11) from equation (12) yields 

The following lemma is proved on page 65 in reference 10: 

Lemma - If Ieil < P  < 1 and 0 5 r 5 k 5  n and np' = e x p  

r k In (1 + ~ i )  (1 + ei)- l  - 11 < kp' 
1 i=l i=r+l I 

Applying this lemma to equation (13) yields 

where 

Let 

14 



Then 

Now 

F=NM*-I=N(M*-M) 

Therefore, for  example, 

* 
f42 = m42 - m42 

Since I f 4 2 1  < c i 2 ,  Imz2 - m421 < e i 2 .  

Define c i 2  eZ2. In general, for  p 2 q + 2, 

- 0  
p,q+l fpq = n Pq 0 + n 

P-1 * + ), npi(miq - miq) + m* - m 
Pq Pq 

i=q+2 

Therefore 

Theref ore  

Define 

Thus, for  p + 1 > q, 

15 



Therefore, equation (8) is still satisfied if substitution is made for  the par t  of algo- 
rithm C that governs the calculation of mr+l,i and bi,r+l as follows: 

For i = 2,3, ..., r I- 
t 
* 

mr+l,i * - (  - -f' nr+l , i  + 

The calculation of Im;+l, j 1 + E E + l , j  requires 
4(r - i) + 1 additions. 

3 ( r  - i) multiplications and 

An upper bound on ]MI can also be calculated by using expanding-interval ari th- 
metic. With this method an  interval [m7p f 6mip] is calculated by using the rules  of 

expanding-interval ari thmetic as described on page 390 in reference 1 o r  under the 

heading "Rounded Interval Arithmetic" on page 11 in reference 11 such that 
m E f 6m. . To find an upper bound on m 

4(r - i) multiplications and 4(r - i) + 1 additions. The 6m calculated by using 
expanding-interval ari thmetic satisfies the following inequality: 

by using this method requires rs.1, j 1P 

iP 
iP 1 

where E' is defined by equation (15). iP 

16 



I 

air = ( air + f aikak,r-l 
k=r+l  

Storage of Arrays 

Although in the above development N, H, and A are thought of as three sepa- 
rate matrices,  there is no need to s tore  them in the computer as separate matrices.  
Notice in algorithm C that after air is used in the calculation of hir it is never used 
again. Therefore, hir can be stored in the same location as air. Also, after air 
is used to  calculate ni,r+l, air is not used again. Thus, ni,r+l can be stored in the 
same location as air. If this scheme is used to s tore  N, H, and A, only one set 
of n X n locations is needed to s tore  all three matrices.  

Single-precision arithmetic can be used in the calculation of m* and Sq. Since 
iP 

N is calculated by using variable-precision arithmetic, each nij must be rounded to  
single precision before either m? 

above the diagonal in the matrix M* = [mTj] are not used, these locations can be used 
to s tore  the elements of N rounded to single precision. 

o r  Sq can be calculated. Since the locations 
1P 

Let m?: = n..  1 fo r  i > j .  With these changes algorithm C becomes 11 1J 0 b?) 
Algorithm D 

For  i = 1,2,...7n 
.~ 

For  r = 1,2,...7n 
i 

If r < n, then 

lajr Find j such that I 
17 



If air # 0, then 

For i = 1,2, ..., n 

Interchange (am. a J 1’ r+ I, i) 

Interchange (aij,ai, r+l) 

Inter change (sa i, sar+ 1, ) 

Interchange (6a. ., 6ai,r+l) 
1J 

For i = r+2,r+3, ..., n 
7- 

For i = r+2,r+3, ..., n 

F - r i = 2,3, ..., r 

/ r \ 

+ f  j=i+l 

18 



For i = 1,2, ..., n 
I 

Determination of 6H 

Now that an  algorithm for  determining N and H has  been developed, the 
interval half-width 6H must be determined so that equation (3) is satisfied. Let 

mJ& = lmTql + 

Let 

M' = [miq] 

Then 

/MI  < M' 

The problem of finding 6H is solved in two steps.  First, a 6Q is found such 
that 

Then 6H is found such that 

6H M' 2 6Q 

Equations (16) and (17) imply that 

IN1 6H /MI  2 IN1 6H M' I IN1 6Q I - R - l 6 ~  
R 

Therefore, if  equations (16) and (17) a r e  satisfied, then equation (3) is satisfied. 

Let 6Q = 6qij . Because of the form of 6H M', 6qil = 0 fo r  i 2 3. Equa- [ I  
tion (16) is satisfied if  

6qli 5 R -  1 6ali 

R -  1 6q21 ni2 5 6ail (i = 2,3, ..., n) 

19 
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I I I I1 1111 I ..1,,-1-..-- -.. , . . . .- 

and 

This last equation is satisfied if 

Therefore, if j > 1 and k > 1, define 

Define 

and 

(2 5 k 5 i) 

(i = 1,2,  ..., n) 

With this definition of 6Q, equation (16) is satisfied. 
6a.. 

Notice in equation (18) the quotients 4 can be calculated beforehand and 
1 -  1 

6aij. stored in the locations reserved for  

If 6H is to satisfy equation (17) then the following equations must be satisfied: 

and 

6h. ik m i j  5 6qij 

k=max(j,i- 1> 

20 



This last equation is satisfied if 

The ref ore,  define 

(max{j,i - 1) 5 k I n) 

and 

(i = 1 or  2) 6hil - = 6qil 

With this definition of 6H, equation (17) is satisfied, 

mi j 
The quotients can be calculated beforehand and stored in the 

n - max{j,i - 1> + 1 

if the elements of 6Q are determined in the sequence shown in the 
location reserved for  Gaij. Once 6qij is determined, it can be stored in the same 
location as 6aij 
following algorithm: 

For  j = 2,3, ..., n 

For  k = 2,3, ... ,n 

The 6hik can be stored in the same location as 6qik if the elements of 6H are 
determined in the sequence shown in the following algorithm: 

For  k = n,n-1 ,...,2 

For  i = 1,2 ,... ,min(k+l,n) 

In calculating 6H and 6Q, it is important that the calculated values be no larger  
than the exact values. Putting the above ideas together gives the following algorithm for  
obtaining 6H: 

21 



Algorithm E 

For i = 2,3, ..., n 1- i ' = i -  1 

For  j = 2,3, ..., n 1 ,I_ 

6all = (RI 6a11)(1 0 0.001) 

For  j = 2,3, ..., n 

For  k = n,n-1, ..., 2 

)r- i = 1,2, .. .,min(k+l,n} 

6aik = ( l<jZk min {%})(I mkj @ 0.001) 

After execution of algorithm E, 
for 6aik. 

6hik is stored in the location initially reserved 

This completes the discussion of how to obtain H and 6H. 

22 
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CHAPTER III 

REDUCTION O F  AN INTERVAL OF HESSENBERG MATRICES TO AN 

INTERVAL OF COLLEAGUE MATRICES 

Chapter I11 is devoted to the reduction of an  interval of Hessenberg matrices to  an  
interval of colleague matr ices  by a similari ty transformation. Where a colleague 
matrix is a matrix of the form 

F =  

1 

-an 

-an- 1 

-'n- 2 

ofn-1 - "2 

Pn - "1, 

The interval of colleague matr ices  is of the form [ F f 6F] where 

. . .  0 

. . .  0 

6 F  = 

A Property of F 

The matrix F has the property that 

n- 1 - 
det(X1 - F) = 2 an-i Pi(X) + Pn(X) 

i=O 

23 



where the Pi(h) are defined by Pi@) = det(X1 - Bi) and 

1 1 Pi 

The proof of this u ses  the following theorem: 

Theorem 2 - The Pi(X) satisfy the recurrence relationship 

with Po = 1 and P - X  - B1. 1 -  

Proof - Pr(X) = det(X1 - Br) 

= del 

-1 x - p  

24 



+ det 

- P1 -a1 

- P2 -cu2 . -1 

-1 

-1 

+ det 

-1 

0 

0 

-1 h - P 2  . -a2 . 

-1. 

since the last  t e rm is zero.  

Now it may be proved that equation (22) is valid. 

-1 0 

Theorem ~ .~ 3 - det(X1 - F) = a,-i Pi(X) + P,(X) 
i=O 

25 



Proof - 

= (-l)"+la, det 

- P1 

-1 

det(h1 - F) = det 

7 

-1 

L 

1 

- c'l 

- P2 

-1 
- 'y2 

-1 

X - P 2  -@2 

-1 - P3 -a3 

-1 

26 



Therefore 

det(X1 - F) = an + an-lP1 + an-2P2 + . . . 

= t an-iPi + Pn 
i =O 

Because of the recurrence relation in equation (23), the polynomials Pi can be 
made to  be the first n polynomials of any desired orthogonal set of polynomials by 
properly selecting the 5 and the Pi. 

Algorithm for  Reducing Hessenberg Matrix to Colleague 

Form by Similarity Transformation 

Now in returning to the problem of reducing the interval [H f 6H] to an interval 
of colleague matrices,  it is desirable to determine V and al,a2, ..., an such that 

VH = F V  

where V is of the fo rm 

V =  
v22 V2 n 

Vnn 

For  j < n the ijth element of equation (24) is 

k=i 

27 



where 

For  j = n, equation (24) gives 

n 1 'ikhkn = Vi-l ,n + PiVin + @ivi+l,n - "n-i+l V nn 
k=i 

- V (i = l ,2,  ... ,n) and Vn+l,n+l = Vnn. The character-  - - - 
an-i+l nn Define 

istic polynomial of F can then be written 

det(X1 - F) = P n ( A )  + 2 an-i Pi@) 
i = O  

n 

Thus, the problem of finding al,a2, :..,an is equivalent to finding an additional column 
for  the matrix V. 

Equation (25) yields 

Equation (26) yields 

n 
P - 

'i,n+l - 'i-l,n + @iVin + "iVi+l,n - )- 'ikhkj 
k=i 

It can be assumed that no h. 
two smaller  problems. 

is zero since if i t  is the problem can be treated as 
i + U  

28 



Equations (28) and (29) yield the following algorithm for  the calculation of V: 

Algorithm F 

Vll = 1 

For  j = 2,3, ..., n+l 

For  i = 1,2 ,..., min(j,n> 

j-  1 

k=i 
- 2 vikhk,j-l + 'i-1,j-l + f i iv i , j - l  + aivi+l,j-l 

v . .  = + 'i,j-I 
11 ' j , j - l  

'n+l,n+l = vnn 

The b.  a r e  the rounding e r r o r s  incurred in the execution of the algorithm. Let 
1j 

K =  

Then 

h2 1 

h32 

VH = F V  + BK 

- .  hn+l,n 1 
Obtaining Midpoint of Interval of Colleague Matrices 

Since H is the midpoint of the interval [H f 6H], it is desirable that F be the 
midpoint of the interval of colleague matrices.  How small  BK must be and how 
large b F  can be must be determined. 

1 Let F' be a colleague matrix; then H'  = V- F'V is a Hessenberg matrix, 
where V is the same as in equation (30). Subtracting this f rom equation (30) gives 

V(H - H') = (F - F')V + BK 

29 



or 

H - H* = v - ~ ( F  - F*)V + V - ~ B K  

It is required that J H  - H'] < 6H, which is true if IV-lBK) < 6H and 

IV-l(F - F*)VI <R R -  6H. 

Define W E V-'. Then it is necessary that IWBKl < - 6H which is t rue  if R' 

The proof of this is on page 18 in reference 6 .  

must be known before V.. can be calculated. Therefore, A bound on Ibi, j- I 
f rom equation (31) it can be seen that the ith column of W must be known before the 
ith row of V can be calculated. There is no direct  method of calculating W from V 
so that the ith column of W is available fo r  the calculation of Vii. However, W can 
be computed independently of V by the following method: 

1J  

If VH = FV then HW = WF. This means that for  j 5 n - 1 and i 5 j -I- 1 

1k k j  - w i , j - l a j - l  + w * * P '  wi '+I 13 J , J  
$ h . w  - 

k=max{l,i-l) 

where w . .  = 0 for  i > j and wio = 0. 
Thus, W can be determined by the following algorithm: 

This equation can be solved for  wi, j+l .  
11 

Wl l  = 1 

For  j = 2,3, ..., n 
7= - 

To use the W determined by this algorithm in equation (31) it is required that 
IW 15 IV-lI but, since the computation of W is done independently of the computation 
of V, this is not necessarily true. If interval ari thmetic is used in the calculation of W 

30 



then it can be guaranteed that I W I exceeds I W' I f o r  any W' corresponding exactly 
to any H' E [H i 6H]; that is, H'W' = W'F'. 

However, if V is calculated by using algorithm A and if the rounding e r r o r s  are 
required to satisfy equation (31) with the computed W how can it be guaranteed that 
this  V corresponds exactly to some H' E [H f 6H]? 

The answer to this  question is contained in  the following theorem which is taken 
from reference 6, page 23: 

Theorem - If W is a n  upper triangular matrix such that I WI 2 IW'] f o r  every W' 
corresponding to  a n  H' in  the interval [H f 6H] and if equation (31) is observed in  the 
computation of V, that is, if I W I IB I IKI < z, then the H' which corresponds to the 

computed V lies in [H f 6H]. 

Now, since a bound on IV-ll is known, a bound on lbij I can be calculated by using 
equation (31). 

Algorithm G 

Thus, V-l  corresponds exactly to H' E [H f 6H]. Therefore, IWI 2 IV-ll. 

Thus the following algorithm is obtained for  the determination of V: 

VI1 = 1 

w 1 1 =  1 

hn+l,n = 1  

For j 2,3, ..., n+l 

For i = 1,2, ..., mi 

If - 

5 =  

[Wij f 6 w . j  11 = 1 hik[wk,j-l * 6wk,j-l] 
k=max(l,i- l) 
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Vn+l,n+l = 'nn 

Interval arithmetic is used in the calculation of [wij f 6wij]. 

Obtaining Interval Half -Width 

In the problem of determining how large to make 6F, the constraint on 6F is 
that 

IV-l(F - F')VI <R R - 1 6 H  

if IF - F'I < 6F. This is true if 

IF - F'l = 

The ref ore  
- 
0 

0 

0 

. . .  0 

. . .  0 

, .  

. . .  0 

0 . . .  
0 . . .  

0 . . .  

0 

0 

1 
- - V and 6Vi E Vi,n+l Define Vi,n+l - "n-i+l ' nn 
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Then 

Up to this point it has  been assumed that an interval [ F f 6F] would be obtained, 
but the algorithm determines Vi,n+l instead of an-i+l and it is easier  to obtain a 
bound on 6Vi than on lan-i+l - ah-i+ll. Thus, a bound 6Vi is found such that 

if  I6Vi I 5 6vi then equation (32) is satisfied. Therefore, 

[Vi,n+l f md (i = 1,2, ..., n) are found such that if V;,n+l E 

then the polynomial Vn+l,n+l Pn(h) + 1 V;,n+l Pi-l(X) is the characterist ic poly- 

nomial of some matrix H' E [H f 6H]. 

- 

n intervals 

* WJ (i = 1,2  ,..., n) 

n 

i=l 
This is t rue because, since equations (32) and (31) 

n - 
a r e  satisfied, it is implied that Pn(h) + 1 ah-i Pi(X) is the characterist ic polynomial 

i = O  
of some H'  E [H f 6H], but 

From equations (33) and (34) i t  can be seen that 

. . . 0 6V1 

. . . 0 6v2- 

10 . . . 0 sv, 

I 

33 



Therefore 

r n 

I f  
Thus, if equation (32) is to be satisfied, it must follow that 

This is t rue  if 

that is, if 

6h. R -  1 1" 6V. 5 - 
1 R (n - j + l)Iwj.' 

11 

Let 

( j  = l,2, ..., n) 

(i = j,j+1, ..., n; j = 1,2 ,..., n) 

( j  = l,2, ..., i) 

- 
Then 6Vi 2 6Vi (i = 1,2, ..., n) implies that equation (32) is satisfied. 

Of course, if F and 6 F  are needed they can very easily be found from Vi,n+l 
and 6vi (i = 1,2 ,..., n). 
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CHAPTER IV 

FACTORING THE CHARACTERISTIC POLYNOMIAL 

In chapter III V , + I , ~ + ~  and intervals [Vi,n+l f Ed (i = 1,2 ,..., n) were 
- 

obtained such that if Vi E [ Vi,n+l f 6VJ (i = 1,2, ..., n) then 

is the characterist ic polynomial of some matrix H' E [H f bH], where the 
the recurrence relation in equation (23) of chapter 111. 

Pi satisfy 

In chapter IV a method is developed for factoring an  interval polynomial into a 
product of interval quadratic polynomials. 
that the interval polynomial to be factored is [ P f 6P1 where 

The notation may be simplified by assuming 

P(x) = anPo + an-lP1 + . . . + + aoPn 

and 

6P(x) = 6anP0 + 6 a n - l ~ 1  + . . . + 6alPnW1 

Also, i t  is assumed that the cui a r e  a l l  equal and the Pi a r e  all equal; that is, 

a. = CY (i = l ,2 ,  ..., n-1) 1 

and 

P i  = P (i = 1,2,.,.,n) 

Given two intervals [C rt 6C] and [D f 6D], define the product 

[ C  -+ 6C][D f 6D] = {C'D'lC' E [C -+ 6C] and D' E [D f 6D]}. 

In obtaining'a quadratic factor of [P f 6P], first 

35 
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and 

are found such that 

Then 6Q and 6 T  are found such that 

that is, 

[Q f 6Q][T i 6T] C [P f 6P] 

The same method applied to [P rt 6P] can then be applied to  [T f 6T] to obtain 
another quadratic factor. 

Obtaining Interval Midpoints 

Given estimates fo r  s and t, P(x) can be factored in the following manner: 

To develop a method fo r  factoring P(x) as shown in equation (36) the following 
lemmas are needed: 

Lemma 1 - If i 2 j 5 0 then 

j 

'i+2k- j 
k=O 

Proof - For j = 0 and i 2 0, POPi = Pi. Thus the lemma is t rue  for  j = 0. Now, 
assume 

$ j-k 

k=O 
'i+2k-j P .P .  = 

1 1  
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R 

1 
i 
1 

i 
\ 

for i Z j if j = 1,2 ,..., m-1. For  i 2 m su 

m- 1 
1-k 

'i+2k-m 
m- 1-k 

= ( x - P )  1 Q! 'i+ak-m+l 
k= 1 k=l  

m- 1 
m- 1 

= 1- cYm-l-k 'i+2k-m+2 + (x - P>Q! q m + l  
k=l  

m- 1 
'i+2k-m + Pi-m+2 + OPi-m) 

k=2 

Therefore 
m 

m i  'i+2k-m 
k=O 

Lemma _ _  2 - P(x) 

Proof - Equation (36) yields 

can be factored as shown in equation (36) by using algorithm H. 
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From lemma 1 

2 PZPi = Pi+2 + @!Pi + a Pi-2 

and 

PIPi = Pi+l 4- 

The ref ore  

Since the polynomials Pi a r e  linearly independent, their coefficients can be 
equated in the above equation. Thus 

a. = bo 

al = bl  - sbo 

a2 = b o a  + b2 - sbl - tb0 

a3 = a(bl - sbo) + b3 - sb2 - tbl 

and for n - 1 2  i 2 4 
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L 
1 

1 t and 

F 
2 an = CY bn-q - s ~ b , - ~  + b, - sbnel - tb,-2 

!I 

1 
B Algorithm H 

Thus the bi can be calculated by the following algorithm: 
I 

bo = a. 

bl  = al + sbo 

b2 = a2 + sbl + tbo - abo 

b3 = a3 + sb2 + tbl - a ( b l  - sbo) 

I 
1 
I ' 
y" 
I 

t 
;$ 

For i = 4,5, ..., n-1 
I 

2 b. = ai + sbi-l + tbi-2 - a(bi-2 - sbi-3) - Q bim4 

bn I 1  = a + sbn-l + tbn-2 + asbn-3 - Q 2 bn-4 
n 

This completes the proof of lemma 2. 

Let u(s,t) = bn-l and v(s,t) = bn. If P2 - sP1 - tPo is to be a quadratic 
factor of P(x) then it is necessary that u(s,t) = 0 and v(s,t) = 0. The problem of 
determining s and t such that this is true is complicated by the fact  that it is not 
practical to execute algorithm H exactly. Thus, actually, approximations U* and v* 
to  u and v a r e  calculated as in the following algorithm: 

Algorithm I 

bo* = a. 

bT = al + sbi + ql 

ba = a2 + sbl + tbo - abo + q2 * * * 

* * * b - a + sb2 + tbl - CY 3 -  3 
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For  i = 4,5, ..., n-1 

* * * * ,  2 *  
bi = a .  1 + sbi-l + tbi-2 - a!(bi-2 - - a! bi-4 + qi 

* * * * 2 *  
b n = an + sbn-l + tbn-2 + a!~b , -~  - a! bn-4 + qn 

u*(s,t) = bi- l  

v*(s,t) = b i  I 

where the qi are rounding e r ro r s .  Let a: = a .  + q. Then 1 1 1' 
< 

This can be rewritten as 

* 
P'(x) = (P2 - sP1 - tP Pn-2 + . . . + bi-3P1 + bn-ZPo) 

where 

Then 

if 

'ai (i = l , 2 ,  ..., n-2) la; - ail 2 
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These equations are satisfied if  

and 

(i = l ,2, ..., n-2) 

I The above equations can be checked to determine if improved estimates s and t 1 
a r e  needed. 
that i s ,  

! 

where 

New estimates SN and tN can be calculated by using Newton' s method; 

YN] tN = [:I + [I:] 

au * 
as 

Approximations - 
following algorithm: 

Algorithm J 

d-l = 0 

do = bo 

d; = bl + sdo + ql 

* 

* *  

* * 

al av and - av* to - and -, respectively, can be computed by the a s  a s  a s  

dg = bg + Sd;+ tdg* - a(dg* - bo*)+ q2 
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au av Algorithm K can be used to compute approximations to - and - as follows: a t  a t  
Algorithm K 

* c-2 = 0 

CTl = 0 

CG = b; 

C1 = bl + sC0 + c1 
For i !2,3:_,n-, 

* *  * 

* * * 2 *  = bi + sCi-l + tCi-2 - C Y ( C ~ - ~  - sC~*-~)  - CY Ci-4 + Ti 

* * * * * 2 *  
‘n-2 = bn-2 “n-3 tCn-4 CYscn-5 - CY ‘n-6 

au av 
at a t  av* are approximations to - and - and - The Ti are the rounding e r r o r s  and - au* 

at a t  
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Then the A s  and A t  satisfy 

as %l 
a s  

where p1 and p2 take into account the rounding e r r o r s  made in determining A s  
and At.  Thus, the new es t imatesfor  s and t are sN = s .t A s  and tN = t - t A t .  

Successive estimates for  s and t can be calculated in this manner, but the 
process  does not cause convergence unless the rounding e r r o r s  are controlled. The 
following method is chosen for  controlling rounding e r ro r s :  A s  the (i + 1)th 

estimate [ti+l] si+1 is being calculated, each of the rounding e r r o r s  [Qr (r = 1,2,...,n), 

77, (r = 1,2,...,n-l), Tr  (r = 1,2 ,..., n-2), and p ,p 

value less  than X llyi I ~ ~ ~ ~ l l " _ .  where X = 

is required to be in absolute 

and I:] is the initial estimate. 

1 21 

ll El II m 

Thus the algorithm for obtaining the interval midpoints is: 

Algorithm L 

For j = 0 , l  , . . . , large 

s = sj  

t = t j  

5 = 5j  

* bo = a. 

bT = (al + sb:) @ 5 

bg = (a2 + sbl + tbo - ab;) @ 4 * * 

b$ = [as + Sbg + t b i  - Ol(bi - Sb;] @ 5 

I -  
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~ For i = 4,5, ..., n-1 
I 

b r  = Li + sb;-l + tbim2 * - a(bi-2 * - sbi-3) * - a 2 *  bim4] @ 5 

‘an-2 6an-l - - %} then 
* ’  R ’ 2R ’ 2R 

convergence has been obtained. Proceed to the 
determination of the interval half -widths. 

For i = 3’4, ..., n-2 
I 



and 

Let 

Let 

* *  
A S = (  bn-1%-2 - bncn-3 * *  ),i 

Cn-2 * d* n-2 - dn-l  * c *  n-3 

X =  
X 3 2 = [:I 

f*(X) = 

J =  

-ai ai- 
a s  a t  
- -  

av av - -  
a s  at- 

45 



and 

J* = 

a s  at 

Then, theorem 4 may be stated as follows: 

Theorem 4 - The convergence criteria of algorithm L are satisfied in a finite number 
of iterations if the following assumptions are satisfied: 

(3) f 
k=l 

1 2 for  all x in IIx - xoll 5 2b where x = s, x = t, f l  = u ,  and f 2  = v  

1 
2 

(4) h < -  where h = abc 

k - h  
(5) XabK < - - 

2 5 + 8 h  
where 

K = sup k(x) 
11 X - X ~ J I  S2b 

and 

2aF 6J(x) + 6f(x) + - 1 k(x) = 1 - 2h 

where 6f and 6 J  are positive continuous functions of x with the property that 
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and, for each i, 

(6) Aab"f sup <: 
X - X O ~ ~  52b 

(7) to 5 4Xb" 

Proof - See appendix A. -- 

Obtaining Interval Half -Widths 

From now on the bo,b17...7b,-2 calculated by algorithm L are denoted by 
* *  * 

bo,bl, ***,bn-2* 
The interval midpoints s and t (bo,bl,...,bn-2) satisfy 

Let 
I 1  ? 

ai = ai (i = 1,2, ..., n-2) 

Then 
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Consider 

- 
then expanding the first equation for  P(x) and equating coefficients of the Pi(x) as 
was  done in lemma 2 yield 

a. = bo 

a;' + 6a;' = bl + 6bl - (s + 6s)b0 

a2 + 6a2 = boa! + b2 + 6b2 - (s + 6s)(bl + 6bl) - (t + 6t)bo 

a 3 + 6a3 = CY bl + 6bl - (s + 6s)bd + b3 + 6b3 

I f  f f  

[ 
1 1  I f  

- (S + 6s)(b2 + 6b2) - (t + 6t)(bl + 6bl) 

and for  n - 2 2 i 2 4 

I t  2 ai + say = CY (bi-4 + 6bi-4) +  CY^^-^ + 6bi-2 - (s + 6s)(bi-3 + 6biW3] 

+ (bi + 6bi) - (s + 6s)(biWl + 6bi-l) - (t + 6t)(bi-2 + 6bi-2) 

a'' n + 6a" n = a!2(bn-4 + 6bn-4) - a(s  + 6 ~ ) ( b , - ~  + 6bn-3) - (t + 6t)(bn-2 + 6b,-2) 

Using the fact that 
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yields 

say = 6bl - 6 s  bo 

6 a i  = 6b2 - s 6bl - 6s(bl + 6bl) - 6t bo 

6,; = a!(6bl - 6 s  bo) + 6b3 - s 6b2 - 6s(b2 + 6b2) 

- t 6bl - 6t(bl + 6bl) 

(37) 

and for n - 2 2 i 2 4 

2 [ 6aI' 1 = a! 6bi-4 + a! 6bi-2 - s 6bi-3 - 6s(bi-3 + 6bi-3j + 6bi - s 6bi-l 

- 6s(bi-l + 6bi-l) - t 6bi-2 - 6t(bi-2 + 6bi-2) 

- 
Now it is desirable to find bounds 6s on 6s, 6t  on 6t, and 6bi on 6bi 

such that if 16s( S 6s, )6tl  5 s, and (6bi/  5 lsbi I (i = 1,2,...,n-2) then 
- 

6P]. This is true if 

For n - 2 5 i 9 4, where M > 1, equations (38) are satisfied if 
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M -  1 R -  1 6b. 5 - - bai I 11 5M R 

? f  ? I  Treating the equations for  6ay, 6ag, 6ai,  and 6an in a s imilar  manner 
- 

shows that equations (38) are valid for 
6bl,...,6bn-2, 6s' and defined in the following manner: 

16bil 5 6bi, 16s 1 5 6s' and 16t I 5 with 
- - - 

6b0 E 0 (i 2 1) 

where 6a. 0 for  j > n. 
J 

6ai 
- 6SE-- R -  m i n k i n  { 6ai- }, min { - ] (41) 

3M R n 3 2 1  Ibi- I + 6bi- n 3 2 3  la1 ( I bi-31 + 6bi-3) 

Let 

Q1 = P2 - SP 1 - tPo 
- 

6Q1 = 6s P1 + 3 Po 
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and 

Then 

The same methods can be applied to f 6R1] to calculate p2 * 6Q2] 
and 1% * 6R2] such that 

[Q2 f 6Q2][R2 * 6Rd C [R1 * 6Rl] 

This process  can be continued until 

where R 

is even o r  odd. 

is either a constant o r  a polynomial of degree one depending on whether n El 
The roots of any Qf E pi * 6QJ a r e  eigenvalues of some matrix A' E [A f 6A]. 
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CHAPTER V 

CONCLUDING REMARKS 

In chapter I1 algorithms are given for  reducing an interval [A f 6A] of real 
of Hessenberg matr ices  such that each element matrices to an interval [H f 6H] 

of [H * 6H] is s imi la r  to some matrix belonging to the interval [A zt 6A]. The algo- 
ri thms of chapter I1 can be used in developing contracting-interval programs for  other 
processes  which require reduction of a matrix to Hessenberg form. 

In chapter I11 algorithms are given for  reducing an interval of Hessenberg matrices 
to an interval of colleague matrices by a similarity transformation. As is shown in 
chapter 111 this interval of colleague matr ices  is equivalent to a n  interval of character-  
ist ic polynomials [P * 6P], each element of which is the characterist ic polynomial of 
some H' E [H * 6H]. 

In chapter IV algorithms a r e  given for  obtaining interval quadratic poly- 
nomiah  [&1 * SQl], [Q2 ~QZ], . . ., p,:, * 6Q,:i such that 

where Rrn, is a constant if  n is even or  R is a polynomial of degree one if  n is 

odd. 

along 

with 

Each 

151 

Now if the Hessenberg matrix H that is obtained from chapter I1 has  any zeros  
the subdiagonal then i t  is partitioned into Hessenberg matr ices  HI, H2, . . ., HZ 

n = order  (Hi) and such that no Hi has a zero  along the subdiagonal. 

Hi 

i= 1 
must be reduced to colleague form by the methods of chapter III, and then 

the characterist ic polynomial factored by the methods of chapter IV. 

nomials [Qij * 6Q.I (j = 1,2,.. ., - ; i = 1,2,. . .,l) and interval polynomials [Ri * 6Ri] 

(i = 1,2, ..., Z ) ,  where Ri is a polynomial of degree one if order  (Hi) is odd and Ri is 
a constant if  order  (Hi) is even. Then if 

Combining the methods of chapters I1 to IV yields quadratic interval poly- 

11 [:I 
Qij E [Qij * 6Qij] 
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and 

Ri E [F$ f 6Ri) 

then 

(i = l ,2 ,  ..., 2) 

is the characterist ic polynomial of some matrix A' E [A f 6A]. 

Thus, any root of equation (42) is an eigenvalue of some matrix A' E [A f 6A]. 
Therefore, since the roots of any 
for  obtaining eigenvalues which a r e  exact for  a matrix differing by less than a specified 
amount f rom the matrix A. 

Qij are trivial  to determine, a method is developed 

Appendix B contains an  example of this method applied to a simple 3 X 3 

It is essential  that variable-precision arithmetic be used when programing the 
algorithms given in this report .  
interval program unless the required amount of precision is used, and this required 
amount of precision may be more than is obtained with either single- o r  double-precision 
arithmetic. 

matrix. 

It cannot be assured that the program is a contracting- 

Variable-precision ari thmetic is presently not available at very many computing 
installations since the hardware on most present-generation computers was not designed 
in a way which would facilitate implementation of variable-precision arithmetic. How- 
ever, software implementations of variable-precision ari thmetic such as SPAR (ref. 8) 
have been developed. 
metic are developed, the advantages of contracting-interval programs will be more dis- 
cernible. 
probably take more computer t ime to execute an algorithm by using variable-precision 
arithmetic than by using single-precision arithmetic. However, this should not lead to 
the dismissal  of the concept of contracting-interval programs. The accuracy of computed 
resul ts  must be determined by some means if these resul ts  are to be of any use, and it 
may be more efficient to  use  a few more minutes of computer time to calculate resul ts  of 
known accuracy than to estimate the accuracy by some other means. 
m-ethods of determining accuracy may require a comparison of the resul ts  of several  
computer runs o r  a study of the problem by a numerical analyst. 

As  more efficient implementations of variable-precision arith- 

Even with efficient implementations of variable-precision arithmetic it will 

Conventional 
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It has been the accepted pattern to have computers assume more and more duties 
previously done by people, so the concept of computing numbers of known accuracy 
should be the natural thing to do when the computers are designed with this in mind and 
when the methods become available. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., July 29, 1971. 
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APPENDIX A 

PROOFOFTHEOREM4 

The proof of theorem 4 makes use of a theorem which gives sufficient conditions 
fo r  the convergence of Newton's method in Rn, where the function and its Jacobian are 
known only approximately. 
page 115 in reference 12. 

This theorem is a modification of a theorem given on 

Suppose it is desired to find a root of f(x) = 0, where 

f(x) = and 

1 X 

x =  1 
By using Newton's method successive approximations would be generated by 

solving J(xi) (xi+l - xi) = -f(xi) for  xi+l, where J(xi) is the Jacobian evaluated 
at xi. In most cases  neither J nor f can be evaluated exactly at the point xi. 
Let J t . (xi)  and ft.(xi) be the approximations to J(xi) and f(xi) that a r e  calculated. 

1 1 

Therefore, actually, 

is solved f o r  xi+l except that this system of equations cannot be solved exactly for  
xi+l. Therefore, xi+l satisfies 

where pi is the e r r o r  made in the calculation. 

Now, if the approximations Jti(xi) and fti(xi) do not approach J(xi) and f(xi) 

or if pi does not approach 0 as i approaches 00 then the sequence of i terates can- 
not be expected to converge to a root of f(x) = 0. 
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APPENDIX A - Continued 

However, suppose it can be guaranteed that 

and 

where 6J(x) and 6f(x) a r e  positive continuous functions of x, 

to is a prescribed value, and X is a constant having the same dimensions as 1/x. 

mined by equation (Al) where equations (A2) to (A4) a r e  satisfied at each step of the 
procedure. 

Theorem 5 - Let successive approximations to a root of f(x) = 0 be generated by 
solving equation (Al) for xi+l a t  each step, where equations (A2) to (A4) a r e  satisfied 

2 and to S 4Xb . 

The theorem gives sufficient conditions for  the convergence of the i terates  deter-  

All norms used a r e  -norms. The following assumptions a r e  made: 

If xo is the initial i terate,  then (IJ-’(x0)(I S a 

11x1 - xoll 

Let the components of f (x) have continuous second derivatives which satisfy 

k= l  

Let 

Let 

F r  

1 
2 

h < - where h = abc 

f (x) be bounded for  11. - xoll 5 2b and 5 i to, and let 
t; 

SUP j(f&x)II I I x - x o ~ ~  22b 

t 5  t o  
56 
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APPENDIXA - Continued 

Let 

6 J (4 1 2aF k(x) E - + 6f(x) + - a 1 - 2h 

and 

Then it is required that 

i - h  
XabK < - - 

2 5 + 8 h  

(6) Xab2i  sup 6J(x)l < A  8 
X-xo 1)22b 

If all these assumptions are satisfied then the i terates  are uniquely defined and 
1Ix - xoI( Z 2b for each v; and the i terates  converge to some vector, say 
for  which 

lim xv =: CY, 
V-00 

f ( C Y )  = 0 

and 
< %  11% - I I  = 2v 

Proof - See reference 7, page 11. 

Lemma 3 - Let wi = yi  + 1 aij(s,t) wj 
j = l  

i- 1 
w: 1 1  = y :  + 2 aij(s,t) w; 

j = l  

and zi = wi - w; (i = 1,2, ..., n) where each a..(s,t) is a continuous function of s 
and t. If Ci(s,t) is a positive continuous function of s and t for  each i and 
if Jyi - yil < 5 Ci(s,t) (i = 1,2, ..., n) then lzil < 5 Bi(s,t) for  some positive continuous 
function Bi(s,t). 

11 
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APPENDIX A - Continued 

Proof - For i = 1 define B1 E C1 and the result  is obvious. 

Assume lzil < eBi (i = 2,3 ,..., k). Then 

k 
P 

k 
v 

k 

Define Bk+l(S,t) Ck+l(s,t) + 1 (ork+l,j(S,t)lBj(S,t)' Then /"k+l( < <%+I 
j = l  

is a continuous function of s and t. Let x = [I. Then and Bk+l 

and 

f(x) = 

f*(X) = 

Let 

au 
a s  a t  

J =  

and 

av av 
las 
L 

J* = 

all* a l l *  
a s  a t  

av* av* 
as a t  

- 

- -  

Theorem 6 - Let f*(x) be calculated by algorithm I where < 5 (i = 1,2,...,n). 

Then there exists a positive continuous function 6f(x) such that (If *(x) - f (x) 11 < < 6f(x) 
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E APPENDIX A - Continued 

j 
f 

for  all x. Let J*(x) be calculated by algorithms J and K where lqil < 5 
(i = 1,2, ..., n-1) and lzil < 5 (i = 1,2, ..., n-2). Then there exists a positive continuous 

function 6J(x) such that 11 J*(x) - J(x))I < 5 6J(x) for  a l l  x. 

i 
i 
f 
1 
I Proof - Since the multipliers of the bi and bT in algorithms H and I a r e  continuous 
$ functions of s and t and, since E 

I 
1 Iai - ki + +i)l= I+i( < 5 (i = 1,2, ..., n) 

I 
1 

I function Bi(s,t). d 
lemma 3 can be applied to  obtain Ibi - brl < 5 Bi(s,t) for  some positive continuous 

Bn- l(s,t) 

Bn(s, t) 
Let 6f(x) = 11 I/ then 6f(x) is a continuous function of x and 

Now 

! 

Let di be the result  of algorithm J when each qi = 0. Then by lemma 3 there exist 
1 I 
4 positive continuous functions Di( s, t) such that 

The ref ore  

1 

and 
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APPENDMA - Continued 

Likewise, if ci is the result  of algorithm K when each Ci = 0 

ICi - c q  < 6 Ci(S,t) (i = 1,2, ..., n-2) 

for some positive continuous functions Ci(s,t) (i = 1,2, ..., n-2). Therefore 

and 

Define 

Then, SJ(x) is a positive continuous function of x and 

Lemma 4 - In any bounded region I( x ,- xo 11 < r, if 5 < to where 
value, then there  exists a constant F such that llf*(x)ll < F fo r  each x in this region. 

Proof - llf*(x)II < l/f(x)ll + to 6f(x). The result  follows f rom the fact that both f(x) 
and 6f(x) are continuous functions. 

Theorem 7 - The convergence criteria of algorithm L are satisfied in a finite number of 
iterations if the following assumptions are satisfied: 

to is some positive 

for  all x in  IIx - xoll 5 2b where x 1 = s, x2 = t, f - u ,  and f - v  
1 -  2 -  

60 



APPENDIXA - Continued 

1 
2 

h < - where h = abc 

.I I 
1 T h  XabK < - - 
2 5 + 8 h  

K = SUP k(x) 
Ilx-xollZ2b 

6J(x) 1 2aF k(x) = -- + 6f(x) + - a 1 - 2h 

Proof - In iteration k of algorithm L the rounding e r r o r s  made in calculating the br, 
C;, and d: a r e  all less than ijk. Thus, theorem 6 can be applied to get 

The rounding e r r o r s  made in calculating A s  and A t  are less than tk '  Thus, 
all the requirements of theorem 5 are met. Therefore, the successive i terates  x- con- 

J 
verge to some cy f o r  which f(cy) = 0. Also, since x j  - cy, t j  - 0.  

6a l  6a2 6an-2 6an-l 6an} 
R .' R ' 2R ' 2R * 

There exists N1 such Let x = -, --- 

that j > N1 implies that 5. < x. 
J 

Now 0 = f(cy) = f (j l im x. 1) = !im fPj> . Therefore, there  exists N2 such that 
1-03 -03 

for  j > N 2  

61 



APPENDMA - Concluded 

and 

These two equations imply that for j > N2 

and 

Therefore, for j > ~.nax{N~,Nz) the convergence c r i te r ia  of algorithm L a r e  met. 
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APPENDIX B 

EXAMPLE 

In appendix B, the algorithms of this report  are applied to a 3 x 3 matrix. It is 
hoped that this will aid the reader  in  understanding which algorithms to use, the sequence 
in which they are applied, and the resul t  of each algorithm. Let 

0.1 0.1 

A =  

-6 -4 - 

R = 10 and each cvi,pi = 0. Use of algorithm D yields 

-4.02 

and use of algorithm E yields 

r . 0 9  0.045 :::: ] 
bA = 0.09 0.045 

0.0225 0.045 

where 1132 = a31. Now let the upper Hessenberg portion of A be renamed 

and let 6H = 6A. Then, algorithm G yields 

-1.667 65.266 

0.3333 -99.3734 

v =  [ 33.33 ] 
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APPENDIXB - Continued 

The fourth column of V is 

Equation (35) yields 

Thus, the interval polynomial is 

33.33X2 + F166.7 @ 0.001dX2 + r268.0 @ 0.0054)X + E135.8393 @ 0.027) 

Now algorithm L is used to factor  this polynomial. If so = 3, to = -2, and 50 = 10- 4 , 
then after the f i r s t  iteration s1 = 3.0022, tl  = -2.0341, and E l  = After two 
iterations 52 = 3.00211, t2  = -2.03841, and 52 = During the third iteration there 
a r e  computed 

* 
bo = 33.33 

bT = -66.63967370 

bg = 0.00016389 

b; = 0.00016928 

The convergence criteria are met. 
- 

Now, by using equations (39) to (41) and with M = 3,' sbl, 6t, and bs are com- 
puted as 

- 
6bl = 0.00018 

- 
6t = 0.00004051 

and 
- 
6s = 0.0000081 
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APPENDIXB - Continued 

Thus 

(X2 - c3.00211@ 0.0000081)X - E2.038410  0.00004054)(33.33X + E66.6396737 @ 0.0001~)  

c 33.33X3 + [-166.7 @ 0.001dX2 + C268.0 @ 0.0054)X + [-135.8393 @ 0.027) 

Note that, since 

H =  

and 

6H = 

- 
5 -4.02 

3 -2.02 

0.01 2.02 - 

- 
0.09 0.045 

0.09 0.045 

- 

if  the 0.01 is replaced with 0 in H and the 0.0225 replaced with 0.0125 in 6H, 
since [O @ 0.0125) c p .01  @ 0.02251, then 

and 

6H = 

- 

0.09 0.045 

0.09 0.045 

- 

Then H can be partitioned into submatrices which can be treated separately. Let 

5 -4.02 

3 -2.02 I - 

- 

0.09 0.045 

6H1 = [0.09 0.045l 

H2 = 2.02 and 6H2 = 0.045. Thus, for  X E [2.02 f 0.0451, X is an eigenvalue of some 
matrix in [A f 6A]. 
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APPENDIX B - Concluded 

Using algorithm G on H1 yields 

0.3333 

The third column of V is 

0.652 

- 
6V1 = 0.02025 

and 
- 
bV2 = 0.0081 

Therefore, the characterist ic polynomial of [HI f 6H1] is 

0.3333X2 + F0.9937 f 0.008aX + [0.652 f 0.026251 

Thus 

(X - c2.02 f 0.044)(0.3333X2 + E0.9937 f 0.008gX + b.652 f 0.020253) 

is an interval polynomial, each element of which is the characterist ic polynomial of 
some A' E [A f bA]. 
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